Pages

Ads 468x60px

Monday, November 17, 2008

Prim’s Algorithm for Minimum Spanning tree

Prim’s Algorithm for Minimum Spanning tree

/************************************************************

-> This Program is to implement Prims algorithm.

-> This program is to find minimum spanning tree
for undirected weighted graphs

-> Data Structers used:
Graph:Adjacency Matrix

-> This program works in microsoft vc++ 6.0 environment.

**************************************************************/

#include

class prims
{
private:
int n; //no of nodes
int graph_edge[250][4]; //edges in the graph
int g; //no of edges in the graph
int tree_edge[250][4]; //edges in the tree
int t; //no of edges in the tree
int s; //source node

//Partition the graph in to two sets
int T1[50],t1; // Set 1
int T2[50],t2; // Set 2

public:
void input();
int findset(int);
void algorithm();
void output();
};
void prims::input()
{
cout<<”*************************************************\n”
<<”This program implements the prims algorithm\n”
<<”*************************************************\n”;
cout<<”Enter the no. of nodes in the undirected weighted graph ::”;
cin>>n;

g=0;

cout<<”Enter the weights for the following edges ::\n”;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
cout<<” < “< ::”;
int w;
cin>>w;
if(w!=0)
{
g++;

graph_edge[g][1]=i;
graph_edge[g][2]=j;
graph_edge[g][3]=w;
}
}
}

// print the graph edges

cout<<”\n\nThe edges in the given graph are::\n”;
for(i=1;i<=g;i++)
cout<<” < “<<<” , “<<<” > ::”<}

int prims::findset(int x)
{
for(int i=1;i<=t1;i++)
if(x==T1[i])
return 1;

for(i=1;i<=t2;i++)
if(x==T2[i])
return 2;
return -1;
}

void prims::algorithm()
{
t=0;

t1=1;
T1[1]=1; //The source node

t2=n-1;
int i;
for(i=1;i<=n-1;i++)
T2[i]=i+1; //The reamining nodes

cout<<”\n*****The algorithm starts*****\n\n”;

while(g!=0 && t!=n-1)
{
// Find the least cost edge
int min=9999;
int p;
int u,v,w;
for(i=1;i<=g;i++)
{
bool flag1=false,flag2=false;

//if u and v are in different sets
if(findset(graph_edge[i][1])!=findset(graph_edge[i][2]))
{
if(min>graph_edge[i][3])
{
min=graph_edge[i][3];
u=graph_edge[i][1];
v=graph_edge[i][2];
w=graph_edge[i][3];

p=i;
}
}
}

//break if there is no such edge

cout<<”The edge included in the tree is ::”;
cout<<” < “< “<
//delete the edge from graph edges

for(int l=p;l{
graph_edge[l][1]=graph_edge[l+1][1];
graph_edge[l][2]=graph_edge[l+1][2];
graph_edge[l][3]=graph_edge[l+1][3];
}
g–;

//add the edge to the tree

t++;
tree_edge[t][1]=u;
tree_edge[t][2]=v;
tree_edge[t][3]=w;

//Alter the set partitions
t1++;

int m;
if(findset(v)==2)
{
T1[t1]=v;
m=v;
}
else if(findset(u)==2)
{
T1[t1]=u;
m=u;
}

int x;
for(x=1;T2[x]!=m;x++);

for(;xT2[x]=T2[x+1];
t2–;

// Print the sets

int k;
cout<<”NOW\nT1 :: “;
for(k=1;k<=t1;k++)
cout<cout<
cout<<”T2 :: “;
for(k=1;k<=t2;k++)
cout<cout<
cout<<”The graph edges are ::\n”;
for(i=1;i<=g;i++)
cout<<” < “<<<” , “<<<” > ::”<
cout<
}
}

void prims::output()
{
cout<<”\nThe selected edges are ::\n”;
for(int i=1;i<=t;i++)
cout<<” < “<<<” , “<<<” > ::”<}
int main()
{
prims obj;
obj.input();
obj.algorithm();
obj.output();
return 0;
}

0 comments: